Прошу помогите решить 1

0 голосов
49 просмотров

Прошу помогите решить 1


image

Алгебра (54 баллов) | 49 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

5^(2x+4) - 25*5^(x+ 4) - 5^x + 25 ≤ 0
5^(2x) * 5^4 - 25*5^x*5^4 - 5^x  + 25 ≤ 0
625 * 5^(2x) - 15625 * 5^x  - 5^x + 25 ≤ 0 
625 * 5^(2x) - 15626 * 5^x  + 25 ≤ 0  
5^(x) = t
625t^2 - 15626t + 25 = 0 
D = 244109376 = 15624^2
t1 = ( 15626 + 15624)/1250 = 25
t2 = ( 15626 - 15624)/1250 = 2/1250 = 1/625

5^x = 25
5^x = 5^2
x = 2

5^x = 1/625
5^x = 5^(-4)
x = - 4

(x + 4)(x - 2) ≤ 0 

x ∈ [ - 4; 2] 

Ответ
x ∈ [ - 4; 2] 

(314k баллов)