Докажите.алгебра. 65 баллов.

0 голосов
38 просмотров

Докажите.
алгебра. 65 баллов.


image

Алгебра (228 баллов) | 38 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

А
(sin³a+cos³a):(sina+cosa)+sinacosa=
=(sina+cosa)(sin²a-sinacosa+cos²a)/(sina+cosa)+sinacosa=1-sinacosa+sinacosa=1
1=1
б
(1+2sinbcosb)/(cosb+sinb)²=
=(cos²b+sin²b+2sinbcosb)/(cos²b+2cosbsinb+sin²b)=1
1=1
в
(sin^4b-cos^4b)/(cos²b-sin²b)=(sin²b-cos²b)(sin²b+cos²b)/(cos²b-sin²b)=-1
-1=-1
г

(750k баллов)
0

ААААААААА

0

БОЛЬШОЕ СПАСИБО