Доказать, что если x1 >=0, x2>=0, x3>=0, x4>=0, то их среднее арифметическое больше или...

0 голосов
40 просмотров

Доказать, что если x1 >=0, x2>=0, x3>=0, x4>=0, то их среднее арифметическое больше или равно корню четвёртой степени из их произведения


Алгебра (15 баллов) | 40 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Ответ ответ ответ ответ ответ ответ

(300k баллов)
0 голосов

В общем виде это знаменитое неравенство Коши о том что среднее геометрическое не превосходит среднего арифментического для положительных чисел и равняется при равенстве чисел
(a₁+a₂+a₃+.....+aₓ)/x ≥ ˣ√ (a₁a₂a₃.....aₓ)
a₁ ...... aₓ ≥0
докажем сначала для 2-х
(a₁+a₂)/2 ≥ √a₁a₂
a₁+a₂≥ 2√a₁a₂
a₁+a₂ - 2√a₁a₂ ≥ 0
(√a₁ - √a₂) ≥ 0 квадрат всегда больше равен 0
докажем на основании этой теоремы что
(a₁+a₂+a₃+a₄)/4 ≥ ⁴√a₁a₂a₃a₄
теперь рассмотрим некие преобразования 
[ (a₁+a₂)/2 + (a₃+a₄)/2 ] / 2 ≥ √ ((a₁+a₂)/2) * ((a₃+a₄)/2)
(a₁+a₂+a₃+a₄)/4 ≥ √ ((√a₁a₂)* (√a₃a₄) = √√(a₁a₂a₃a₄)=⁴√(a₁a₂a₃a₄) чтд
-----------------------------------
можно доказать в общем для n переменных по методу математической индукции
вышеуказанный метод модно применять для степеней 2 для 2 4 8 16 итд членов

(317k баллов)