Найти все значения параметра a, при каждом из которых уравнение имеет хотя бы один корень...

0 голосов
55 просмотров

Найти все значения параметра a, при каждом из которых уравнение имеет хотя бы один корень и укажите корни уравнения для каждого из найденных значений а.
(x-3)(x+1)+3(x-3)\sqrt{ \frac{x+1}{x-3} }=(a-1)(a+2)


Алгебра (769 баллов) | 55 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

(x-3)(x+1)+3(x-3) √(x+1)/(x - 3) = (a+2)(a-1) ;  a -?  хотя бы один корень
---------
ОДЗ: (x+1)/(x-3) ≥0  ⇔ {(x+1)(x-3) ≥0 ; x ≠3 , т.е. x∈(-∞; -1] ∪ (3 ;∞) .
В  ОДЗ  данное уравнение ⇔ (x-3)(x+1)±3 √(x+1)(x - 3) = (a+2)(a-1). 
( знак " -" ,  если   x <3  </span>и   знак "+"  если   x >3 ) ;
заменим  
√(x+1)(x - 3) =√(x² -2x - 3)= t  ≥ 0  получится квадратное уравнение  t² ±3t  - (a+2)(a-1) =0  с дискриминантом
D =(±3)² +4(a+2)(a-1) = 4a+4a+1 =( 2a +1)²   ≥ 0. 
рассмотрим  два варианта :
a)
 x∈ (- ∞ ; 1]  .
t² - 3t -(a+2)(a-1) =0 ; 
t₁ = (3-2a-1) /2 =  -(a -1)   ;
t₂ = (3+2a+1) /2 = a+2 .
* * * можно было и догадаться  [t = -(a-1) ; t = (a+2) . Виет  * * *
[√(x² -2x -3)  = -(a -1)  ; √(x² -2x -3)  = a+2 .
---
a₁)  a ≤ 1  * * *  -(a -1)  ≥ 0 * * *
√(x² -2x -3)  = -(a -1)  
x² -2x -3  = (- (a -1)) ² .
x² -2x - 3 -(a -1)² = 0 .  D₁/4  =1 +3 +(a -1)²  = 4 +(a -1)²  ≥ 2²
x₁=1+√(4 +(a -1)²)   ≥ 3  ∉ (-∞; 1].
x₂=1 - √(4 +(a -1)²)     ≤ 1. в частности    если  a=1 ⇒ x =1.
a₂)  a ≥ -2  * * * a+2 ≥ 0 * * *
x² -2x -3  = (a+2)² ;
x² -2x -3  - (a+2)²  =0    D₂/4  =1 +3 +(a +2)²  =4+(a+2)²  ≥ 2².
x₁' =1+√(4+(a+2)² )   >1 ∉ (-∞; 1].
x₂'=1 - √(4+(a+2)² )      ≤ 1. в частности , если  a= -2 ⇒ x =1. . 
=======  
b) x > 3

t² +3t -(a+2)(a-1) =0    * * *
t₃ =(-3-2a -1)/2 = -( a +2) ;  
t₄ =(-3+2a +1)/2 = (a -1).
 * * * t₃=t₂  и  t₄  = - t₁  не случайно  * * *
b₁)  √(x² -2x - 3 ) = -(a+2)    
a+2 < 0  * * * (если  a = -2 ⇒ [x =1 ; x =3  ∉ ОДЗ  (3 ;∞)  * * *
x² -2x - 3 = (a+2)² ;
x² -2x -3 -(a +2)²  =0  ; D/4 =1+3+(a +2)²= 4 +(a+2)²  ≥ 2² .
x₃ =1+ √(4 +(a+2)² ) , если  a < - 2.<br>x₄ =1 - √(2+a ) .∉  (3 ;∞)
b₂)  √(x² -2x - 3) = a -1 ;
a  >1  (если   a =1⇒[ x = -1 ; x =3  ∉  (3 ;∞) 
x² -2x - 3 = (a -1)² ;
x² -2x - 3 - (a -1)²  =0 ;   D/4 = 1  +3+ (a -1)² = 4 +(a -1)²  > 2²
x₃' =1+ √(4 +(a-1)² )  
, если  a > 1
x₄' =1 - √((4 +(a-1)² ) .∉  (3 ;∞)

ответ :  1+ √(4 +(a+2)² ) ,  если  a < - 2;<br>              1 - √(4 +(a+2)² ) ,  если   a ≥ -2 ;
              1 - √(4 +(a -1)²)  ,  если а ≤ 1  ;      .
              1+ √(4 +(a -1)² )  , если  a > 1


(181k баллов)