Пусть y = x u(x), тогда y' = xu' + u
xy' - y = 3 (x^2 + y^2)^(1/2)
x^2 u' + xu - xu = 3|x| (u^2 + 1)^(1/2)
u' = 3(u^2 + 1)^(1/2) / |x|
Получилось уравнение с разделяющимися переменными.
du/sqrt(1 + u^2) = 3dx / |x|
Интеграл от правой части равен ln Cx^3
Интеграл от левой части тоже известный, очевидно, будет arsh u (если это не очевидно, сделайте замену u <- iu, получится табличный интеграл i arcsin(iu) = arsh u). Известно, что arsh u = ln(u + sqrt(u^2+1)).<br>
ln(u + sqrt(u^2 + 1)) = ln Cx^3
u + sqrt(u^2 + 1) = Cx^3
u^2 + 1 = u^2 - 2uCx^3 + C^2 x^6
2u Cx^3 = C^2 x^6 - 1
u = (C^2 x^6 - 1)/(2Cx^3)
y(x) = x u(x) = (C^2 x^6 - 1)/(2C x^2)