Помогите решить уравнения и неравенства, пожалуйста. Продам душу за решение хотя бы...

0 голосов
109 просмотров

Помогите решить уравнения и неравенства, пожалуйста. Продам душу за решение хотя бы нескольких логов ♥


image

Алгебра (132 баллов) | 109 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

2.
a) lg(x-1)=0,5*lg(1+1,5x)   |×2  
ОДЗ:  x-1>0   x>1  1+1,5x>0  x>-2/3   ⇒    x∈(1;+∞)
2*lg(x-1)=lg(1+1,5x)
lg(x-1)²=lg(1+1,5x)
(x-1)²=1+1,5x
x²-2x+1=1+1,5x
x²-3,5x=0
x*(x-3,5)=0
x₁=0  ∉ОДЗ    x=3,5.
б) 3/(lgx-2)+2/(lgx-3)=-4
3*lgx-9+2lgx-4=-4lg²x+4*5lgx-4*6    ОДЗ:  x>0
5lgx-13=-4lg²x+20lgx-24
4lg²x-15lgx+11=0   
lgx=t
4t²-15t+11=0   D=49
t₁=1        lgx=1             x₁=10
t₂=2,75   lgx=2,75       x₂=10^(2,75).
lg²x²-3*lgx²=4
lgx²=t
t²-3t-4=0   D=25
t₁=4        lgx²=4     x²=10⁴             x₁=100       x₂=-100
t₂=-1       lgx²=-1    x²=10⁻¹=0,1    x₃=√0,1      x₄=-√0,1.
3.
a) log₂(1-x)<1    ОДЗ: 1-x>0     x<1<br>log₂(1-x)1-x<2<br>x>-1  ⇒  Согласно ОДЗ:
x∈(-1;1).
б) (log₃x-2)*√(x²-4)≤0
ОДЗ: x>0    x²-4≥0    (x+4)(x-4)≥0   -∞____+____-4____-____4____+____+∞
x∈(-∞;-4]U[4;+∞)   ⇒  x∈[4;+∞).
Так как  √(x²-4)≥0   ⇒
log₃x-2≤0
log₃x≤2
log₃x≤log₃9
x≤9  ⇒  Согласно ОДЗ:
x∈[4;9].

(253k баллов)
0

Огромное спасибо!!! Вы чудо :_)

0

Неравенства решать?

0

Если не сложно ^^ Буду очень признательна!

0

Решил.

0

Челом бью! ♡

0

Удачи!