Основанием сосуда в форме прямоугольного параллелепипеда является квадрат со стороной...

0 голосов
513 просмотров

Основанием сосуда в форме прямоугольного параллелепипеда является квадрат со стороной 40см. Высота воды в сосуде достигала 10см. Пустую емкость, имеющую форму прямоугольного параллелепипеда со сторонами основания 25см и 20см и высотой 14см, погрузили на дно сосуда. Вода в сосуде поднялась, и часть ее перелилась в емкость. Какой высоты достигла вода в емкости?


Геометрия (19 баллов) | 513 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Объём пустой ёмкости: Vп=25·20·14=7000 см³.

Объём имеющейся воды в первой ёмкости: Vв=40·40·10=16000 см³.

При погружении пустой ёмкости на дно первого сосуда уровень воды выровняется по высоте пустой ёмкости (14 см), значит объём воды, находящейся между стенками двух ёмкостей будет равен:
V1=40·40·14-Vп=22400-7000=15400 см³.

Объём лишней воды, перетекшей в пустую ёмкость: V2=Vв-V1=16000-15400=600 см³.

Уровень воды, которой достигнет вода во второй ёмкости можно вывести из формулы объёма для этой ёмкости:
25·20·h=600,
500h=600,
h=1.2 см - это ответ.

(34.9k баллов)