Поскольку (a^n)^m= a^(nm),
(5^(log_3 7))^(log_7 3)=5^((log_3 7)(log_7 3)).
Докажем, что (log_a b)(log_b a)=1.
Это становится очевидным, как только мы вспомним формулу, входящую в школьную программу и являющуюся частным случаем формулы перехода к новому основанию:
log_a b=1/(log_b a).
Поэтому наше выражение равно 5^1=5
Ответ: 5
Замечание. Можно решать по-другому, но это будет сложнее. Вспомним, что a^(log_a b) =b (фактически это есть определение логарифма, хотя в учебниках это тождество называется основным логарифмическим тождеством). Поэтому
5=3^(log_3 5), поэтому наше выражение можно переписать в виде
3^((log_3 5)(log_3 7)(log_7 3)). Сначала 3 возведем в степень log_3 7; получим
7^((log_3 5)(log_7 3)). Сначала 7 возведем в степень log_7 3; получим 3^(log_3 5), а это выражение равно 5