Синус острого угла прямоугольной трапеции равен отношению высоты к наклонной стороне трапеции.
sin α = h:a
a = h:sin α = 46:23/265 = 46*265/23 = 2*265 = 530 см.
Высота делит большее основание на 2 части. Одна из них равна меньшему основанию, вторая является катетом прямоугольного треугольника, образованного высотой и наклонной стороной трапеции.
По теореме Пифагора часть большего основания
b = √(a²-h²) = √(a-h)(a+h) = √(530-46)(530+46) = √(484*576) = √(278784) = 528.
Тогда большее основание = 528+46 = 574.
Периметр:
P = 46+46+530+574 = 1196