Знаменатель 25-x^2 раскладываем по формуле сокращённого умножения:
a^2-b^2=(a-b)(a+b), получается (5-х)(5+х).
В знаменателе третьей дроби (х-5) меняем знаки на противоположные и соответственно меняется знак перед дробью, получается +х/(5-х)
10/(25-x^2) - 1/(5+x) - x/(x-5) = 10/(5-х)(5+х) - 1/(5+х) - x/(x-5) = 10/(5-х)(5+х) - 1*(5-х)/(5-х)(5+х) + х*(5+х)/(5-х)(5+х) = 10-5+х+5х+2х/(5-х)(5+х)=5+6х+х^2/(5-х)(5+х)