Найдите восьмой член геометрической прогрессии BN если B1 равно 162 и B3 равно 18
B3 = b1*q^2 ==> 162*q^2 = 18 q^2 = 1/9 q = ± 1/3 1) q = 1/3 b8 = b1*q^7 = 162*(1/3)^7 = 162/2187 = 2/27 2) q = - 1/3 b8 = b1*q^7 = 162*(-1/3)^7 = - 162/2187 = - 2/27 Ответ ± 2/27
В1=162; в3=18; q^2=b1÷b2=18÷162=1/9; q=-1/3; q=+1/3; 1)q=-1/3; b8=b1q^7=162 × (-1/3)^7= =-162×1/2187=-2/27; q=1/3; b8=162 × (1/3)^7=162 × 1/2187=2/27.