Ƒ'(x) = (1)' + (3x)' – (1/3)(x³)' – (1/4)(x⁴)' = 3 – x² – x³ = 0.
Пусть y = x + 1/3, тогда. –3 + (y – 1/3)² + (y – 1/3)³ = 0 ⇔ y³ – y/3 – 79/27 = 0 ⇔ (1/27)(27y³ – 9y – 79) = 0 ⇔ 27y³ – 9y – 79 = 0 ⇔ y ≈ 1.5076 ⇒ x ≈ 1.1746 ⇒ ƒ(1.1746) ≈ 3.50772 = max.
Минимума нет.
Ответ: max ≈ 3.50772.