В равнобедренном треугольнике abc (ab=bc) середина боковой стороны удалена от основания...

0 голосов
117 просмотров

В равнобедренном треугольнике abc (ab=bc) середина боковой стороны удалена от основания на 6 см. найти расстояние от точки пересечения медиан треугольника abc до вершины b


Геометрия (95 баллов) | 117 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Треугольник ABC (по традиции буду обозначать вершины большими буквами), AB=BC;  D - середина BC; DE - перпендикуляр, опущенный из D на AC. Проведем высоту BF (поскольку треугольник равнобедренный, она по совместительству является также медианой и биссектрисой). DE является средней линией ΔBCF⇒BF=2DE=12.
Как известно, медианы в точке G пересечения делятся в отношении 2:1, считая от вершины⇒BG:GF=2:1. Делим BF на три части, одну даем GF, две другие даем BG

Ответ: 8

(64.0k баллов)