(√ 3 )cos(x+45°)+sin(x+45°)=√ 2
a cos(x)+b sin(x)=c ⇔a/(√a²+b²) cos(x)+b/(√a²+b²) sin(x)=c/(√a²+b²)
[(√ 3 )/(2)]·cos(x+45°)+(1/2)·sin(x+45°)=(√ 2)/2
cos φ=[(√ 3 )/(2)]
sinφ=[1/2] tgφ=1/√3
cosφ ·cos(x+45)+sinφ ·sin(x+45°)=(√ 2)/2
cos((x+π/4)-φ )=(√ 2)/2
1) ((x+π/4)-φ )=π/4+2πn, n∈Z ⇒ x1=φ+2πn,
2) ((x+π/4)-φ )= -π/4+2πn, n∈Z ⇒x2= -π/2+φ+2πn