РЕШИТЕ СИСТЕМУ!! {x+y+xy=5 {x^2+y^2=5

0 голосов
18 просмотров

РЕШИТЕ СИСТЕМУ!!
{x+y+xy=5
{x^2+y^2=5


Математика (80 баллов) | 18 просмотров
Дан 1 ответ
0 голосов

Сделаем замену a = x + y, b = xy

Тогда первое уравнение будет иметь вид a + b = 5.

Рассмотрим второе уравнение.

x^2 + xy + y^2 = x^2 + 2xy + y^2 - xy = (x + y)^2 - xy

Тогда второе уравнение будет выглядеть так: a^2 - b = 7.

Получаем систему:

a + b = 5,

a^2 - b = 7.

Из первого уравнения b = 5 - a. Подставляем полученное во второе уравнение:

a^2 - 5 + a = 7

a^2 + a - 12 = 0

Его корни a = -4 и a = 3. Тогда b = 9 и b = 2.

Делаем обратную замену.

Первая система:

x + y = -4,

xy = 9.

Эта система не имеет решений.

Вторая система:

x + y = 3,

xy = 2.

Она имеет решения (1;2) и (2;1)

Получаем два ответа: (1;2) и (2;1).

(196 баллов)