Тождество — это уравнение, которое удовлетворяется тождественно, т. е. справедливо для любых допустимых значений входящих в него переменных. Доказать тождество - значит установить, что при всех допустимых значениях переменных его левая и правая часть равны.
Способы докозания тождества:
1. Выполняют преобразования левой части и получают в итоге правую часть.
2. Выполняют преобразования правой части и в итоге получают левую часть.
3. По отдельности преобразуют правую и левую части и получают и в первом и во втором случае одно и тоже выражение.
4. Составляют разность левой и правой части и в рзультате её преобразований получают нуль.
Т. к. мы не можем преобразовать правую часть, следовательно, мы будем преобразовывать левую. ( Т. к. я не могу написать число, возведённое во вторую степень, например число- x в квадрате, я буду писать так: x умноженное на х, сокращённо х умн. на х)
Итак, преобразовываем:
х умн. на х + 8х - 5х - 40 - х умн. на х + х - 4х + 4=-36,
(Мы многие числа можем взаимно уничтожить! Это иксы в квадратных степенях, потому что один из них положительный, другой отрицательный, и подобные числа - 8х; -5х; х; -4х. Потому что 8х - 5х + х - 4х= 0).
В итоге, у нас получилось -40 + 4= -36.
Выполнив несложную математическую операцию 4-40, мы получим -36.
-36=-36.
Тождество доказано!