Сначала преобразовываем первую скобку.
1) приводим к общему знаменателю.
(a+b)*b/ab - (a+b)*a/ab
2) Считаем:
(a+b)*b/ab - (a+b)*a/ab= (ab+b^2-a^2-ab)/ab = (b^2 - a^2)/ab
3) В числителе получается формула:
b^2-a^2 = (b-a)*(b+a)
4) Следующее действие - деление. А при делении дробей мы знак деления меняем на знак умножения и ту дробь, НА которую делим "переворачиваем", можно сказать. Вообще это называется "Замена дроби обратной ей дробью"). Значит мы дробь
(a+b)/a^2*b^2
заменяем "обратной" дробью, и получается
a^2*b^2/(a+b).
5) Меняем знак деления на знак умножения, и перемножаем дроби. Получается:
((b-a)*(b+a)/ab) * (a^2*b^2/(a+b))=(b-a)*(b+a)*a^2*b^2 / ab*(a+b)
6) Сокращаем подобные множители:
(b+a) в числителе с (a+b) в знаменателе
a^2*b2 в числителе с ab в знаменателе (в чилителе останется просто ab.)
7) После сокращение выражение приобретает вид:
(b-a)*ab=ab^2-a^2b.
Это конечный ответ.
Вот, держи)
Да, и если что, то a^2 - это а в квадрате, и b^2 - это b в квадрате.