ПОМОГИТЕ ПОЖАЛУЙСТА ОЧЕНЬ СРОЧНО С ПЕРВООБРАЗНЫМИ!!!! ОТДАЮ МНОГО БАЛЛОВ!!! Для функции...

0 голосов
43 просмотров

ПОМОГИТЕ ПОЖАЛУЙСТА ОЧЕНЬ СРОЧНО С ПЕРВООБРАЗНЫМИ!!!!
ОТДАЮ МНОГО БАЛЛОВ!!!

Для функции y=g(x) найдите ту первообразную, график которой проходит через заданную точку M:

1. g(x)=2cos^2(x/2)-1, M (pi/2; 16)
2. g(x)=cos^2(x/2)-sin^2(x/2), M (0;7)
3. g(x)=1-2sin^2(x/2), M (pi/2; 15)

Пожалуйста, помогите подробным решением, нам сказали, что нужно решать как-то через подставление тригонометрических формул, но сам принцип вообще толком не объяснили...


Алгебра (108 баллов) | 43 просмотров
Дан 1 ответ
0 голосов

1)g(x)=2cos^2(x/2)-1, M (pi/2; 16)
Используем формулу понижения степени:
cos^2(x)=(1+cos(2x))/2
g(x)=2cos^2(x/2)-1=(2*(1+cos(2x/2))/2)-1=1+cosx-1=cosx
Первообразная cosx=sinx+C
G(x)=sinx+C
Подставляем координаты точки М(pi/2;16)
16=sin(pi/2)+C
C=15
G(x)=sinx+15 - искомая первообразная

2)g(x)=cos^2(x/2)-sin^2(x/2), M (0;7)
Аналогично через ф. понижения степени:
g(x)=((1+сosx)/2)-((1-cosx)/2)=(2cosx)/2=cosx
G(x)=sinx+C
7=sin(0)+C
C=7
G(x)=sinx+7 - искомая первообразная

3)g(x)=1-2sin^2(x/2), M (pi/2; 15)
g(x)=1-2*(1-cosx)/2=1-1+cosx=cosx
G(x)=sinx+C
15=sin(pi/2)+C
15=1+C
C=14
G(x)=sinx+14 - искомая первообразная

p.s.: простая формула понижения степени и ничего более

(14.3k баллов)
0

Спасибо огромное!!!