Пусть будет треугольник ABC. Биссектрисы пересекаются в точке О, образуя тупой угол АОС, который и надо найти. ВК - высота. Найдем угол КСВ: ВК=ВС*sinКCВ, sinКCВ = ВК/ВС=19,3/38,6=0,5; угол КСВ равен 30° и равен углу ВАК, т.к в равнобедренном треугольнике углы при основании равны. Биссектрисы делят эти углы пополам и получается по 15°. Сумма углов треугольника АОС равна 180°. Значит, угол АОС = 180° - 15° - 15° = 150°