Трапеция ABCD вписана в окружность. Хорда ВР пересекает под прямым углом основание AD в...

0 голосов
71 просмотров

Трапеция ABCD вписана в окружность. Хорда ВР пересекает под прямым углом основание AD в точке М, причём АМ = 2, МР = 4. Найдите площадь трапеции, если её средняя линия равна 18.


Геометрия (135 баллов) | 71 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Поскольку трапеция вписана в окружность, она равнобедренная, поэтому если наряду с высотой BM провести высоту CN, то ND=AM=2, а тогда полусумма оснований (равная средней линии) равна BC+2⇒BC=MN=16⇒MD=18. Теперь легко найти высоту трапеции:
AM·MD=BM·MP⇒BM=(2·18)/4=9⇒ площадь может быть вычислена по формуле полусумма оснований, умноженная на высоту:

S=18·9=162

Ответ: 162

(64.0k баллов)