ПРОШУ ПОМОГИТЕ РЕШИТЬ ! ДОКАЖИТЕ ЧТО ЧЕТЫРЕХУГОЛЬНИК С ВЕРШИНАМИ В ТОЧКАХ A (-5;-6) B (...

0 голосов
50 просмотров

ПРОШУ ПОМОГИТЕ РЕШИТЬ !

ДОКАЖИТЕ ЧТО ЧЕТЫРЕХУГОЛЬНИК С ВЕРШИНАМИ В ТОЧКАХ A (-5;-6) B ( -2;3) C (10;9) D (7 0) ЯВЛЯЮТСЯ ПАРАЛЛЕЛОГРАММОМ И ОПРЕДЕЛИТЕ ДЛИНУ ЕГО СТОРОН


Геометрия (36 баллов) | 50 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Как известно, у параллелограмма противоположные стороны равны. Поэтому, мы можем попробовать составить два вектора - AB и CD
если они параллельны друг другу, то будет выполняться условие AB=CD*n
где n-некое число

AB=(-2-(-5);3-(-6))=(3;9)
CD=(7-10;0-9)=(-3;-9)

Как видно, AB=CD*-1, поэтому вектора AB и CD параллельны

Проверим это же условие для сторон AD и BC
AD=(7-(-5);0-(-6))=(12;6)
BC=(10-(-2);9-3)=(12;6)

Как видно, вектора AD и BC параллельны

Есть еще одно условие: если диагонали четырехугольника пересекаются в одной точке и делятся в ней пополам, то четырехугольник - параллелограмм.

Для этого найдем координаты середин отрезков AC и BD

AC: x=\frac{-5+10}{2} =2.5;y= \frac{-6+9}{2} =1.5; (2.5;1,5)
BD: x= \frac{-2+7}{2} =2.5; y= \frac{3}{2} =1.5; (2.5;1.5)

Как видно, обе диагонали имеют середины в одной и той же точке

Учитывая все доказательства выше, можно говорить, что ABCD - параллелограмм

Длины всех сторон можем найти, посчитав длины векторов выше

AB=(3;9)
|AB|= \sqrt{3^2+9^2} =\sqrt{90}=3\sqrt{10}
CD=(-3;-9)
|CD|= \sqrt{(-3)^2+(-9)^2} =\sqrt{90}=3\sqrt{10}
AD=(12;6)
|AD|= \sqrt{12^2+6^2} =\sqrt{180}=6\sqrt{5}
BC=(12;6)
|BC|= \sqrt{12^2+6^2} =\sqrt{180}=6\sqrt{5}