Решите уравнение и выбрать корни из промежутка [П;2П]: tg^2 x-5/sin(4,5П-x) +7=0

0 голосов
258 просмотров

Решите уравнение и выбрать корни из промежутка [П;2П]: tg^2 x-5/sin(4,5П-x) +7=0


Математика (137 баллов) | 258 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
ОДЗ: \cos x \ne 0\\ x\ne \dfrac{ \pi }{2} + \pi n,n \in \mathbb{Z}
tg^2x- \dfrac{5}{\sin( \frac{9 \pi }{2} -x)} +7=0\\ \\ tg^2x- \dfrac{5}{\cos x} +7=0|\cdot \cos^2x\\ \sin^2 x-5\cos x+7\cos ^2x=0\\ 1-5\cos x+6\cos^2x=0

Пусть \cos x=t, причем |t| \leq 1, тогда имеем

6t^2-5t+1=0

Решая квадратное уравнение, имеем:

t_1= \frac{1}{2} \\ t_2= \frac{1}{3}

Обратная замена.

\cos x= \dfrac{1}{3} \\ \\ x=\pm \arccos\bigg(\dfrac{1}{3} \bigg)+2 \pi n,n \in \mathbb{Z}\\ \\ \\ \cos x=\dfrac{1}{2} \\ \\ x=\pm \dfrac{\pi}{3} +2 \pi n,n \in \mathbb{Z}


Отбор корней.

n=1;\,\,\,\, x=-\arccos\bigg(\dfrac{1}{3} \bigg)+2 \pi

n=1;\,\, x=- \dfrac{\pi}{3} +2 \pi =\dfrac{5\pi}{3}