Почему (а:b)+(c:d)=(ad+cb):bd Т.е. почему мы складываем дроби именно таким вот образом? ...

0 голосов
71 просмотров

Почему (а:b)+(c:d)=(ad+cb):bd
Т.е. почему мы складываем дроби именно таким вот образом?
Прошу подробнее.


Математика | 71 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Для сложения дробей с разными знаменателями необходимо привести их к общему знаменателю.
Очевидно, что для дробей a/b  и  c/d  общим знаменателем будет bd
Для сохранения значения дробей нужно домножить числитель каждой из них на недостающую величину.
Для дроби  a/b  такой величиной будет d, и дробь приобретет вид  ad/bd.
Для дроби  c/d  такой величиной будет b, и дробь приобретет вид  cb/db
Так как значения дробей не изменились (при умножении числителя и знаменателя на одно и то же число), и обе дроби теперь имеют общий знаменатель bd, - мы можем их сложить:
       a/b + c/d = ad/bd + cb/db = (ad+cb)/bd

(271k баллов)
0

Ну в конце-концов если разница будет в 7-8 знаке после запятой, это на практические вычисления не повлияет

0

Ну да-да....

0

Но про жизненную необходимость я бы не говорил

0

Ну вообще то да, вы правы

0

А калькулятор с собой уже давно не таскают, щас вон в сотовом калькулятор есть.

0

0,01 + 1/15=0,01+0,067=0,077 - Так Вы именно привели эти дроби к общему знаменателю - 1000...)))

0

Поэтому и был задан вопрос. Если у меня в знаменатели например число пи?

0

Вы мазохистка? :)))))

0

Не хочу на веру принимать.

0

Это просто удобный способ сложения или вычитания, не более того.

0 голосов

Таким  образом мы приводим оба слагаемых  к общему знаменателю. Тогда числитель суммарной дроби равен сумме числителей слагаемых. А знаменатель будет общий. А приводим дроби к общему знаменателю как раз для того, что бы так по простому найти их сумму или разность.

(71.9k баллов)
0

да

0

Но зачем мы приводим дроби к общему знаменателю?

0

спасибо)

0

Вас с наступающим 8 Марта!

0

А какой ответ вы ждёте? О чём нужно говорить?

0

Спасибо, но по-моему это не ответ....

0

Подправил

0

Если рассматривать дроби как функции (если так можно) , то более менее понятно. ъ