1) АВС⊥АВМ, ВС∈АВС, ВС⊥АВ ⇒ ВС⊥АВМ.
Прямая, перпендикулярная плоскости, перпендикулярна любой прямой, лежащей в этой плоскости, значит ВС⊥АМ.
2) В равнобедренном треугольнике АВМ проведём высоту МН. АН=ВН=АВ/2=2 см.
В прямоугольном тр-ке СВН СН²=ВС²+ВН²=4²²+2²=20,
СН=2√5 см.
В прямоугольном тр-ке BMH MH²=ВМ²-ВН²=24-4=20,
МН=2√5.
В прямоугольном тр-ке МСН катеты СН и МН равны, значит ∠МСН=45° - это ответ.