Помогите с решением ! Срочно! 1. Исследуйте функцию и постройте ее график y=x^3 - 3x^2 +4...

0 голосов
25 просмотров

Помогите с решением ! Срочно!

1. Исследуйте функцию и постройте ее график y=x^3 - 3x^2 +4
2. Найдите наибольшее и наименьшее значении функции на данном промежутке: f(x)=(x+1)^2 (x-1) [-2;0]


Алгебра (20 баллов) | 25 просмотров
Дано ответов: 2
0 голосов
Правильный ответ
1. Исследуйте функцию и постройте ее график y=x^3 - 3x^2 + 4 
2. Найдите наибольшее и наименьшее значении функции на данном промежутке: f(x)=(x+1)^2 (x-1)        [-2;0] .
----------
 y= x³ - 3x² + 4 
1.Область определения функции D(f)  =   (-∞; ∞).
2. Определяем точки пересечения графики функции с координатными осями 
a) c осью абсцисс 
: y =0   ⇒  x³ - 3x² + 4  =0 , x =  -1 корень 
(x³+x²) - (4x²+4x) +(4x+4) = 0 ;
x²(x+1) -4x(x +1) +4(x +1) =0 ⇔(x+1)(x² - 4x+4) =0⇔(x+1)(x-2)²  =0→
A(-1 ;0) ; B(2 ;0).
b) с осью ординат:  x =0   ⇒ y = 4  → C(0 ;4).
3.Определяем интервалы монотонности функции 
Функция возрастает (↑), если у ' >0, убывает(↓) , если у ' < 0.
y ' =3x² -6x  =3x(x-2) ; 
y '    +                     -                      +
------------ 0 -------------------- 2 ----------------
y     ↑      max         ↓          min        

x =0 точка максимума _ мах (у) = 4
x =2 точка минимума _ min (у) = 2³ -3*2² +4 =0 
Функция возрастает , если x ∈(-∞ ; 0) и  x ∈(2 ;∞ ),  
убывает ,если  x ∈ (0 ;2 ).
---
4)
определим точки перегиба , интервалы  выпуклости и вогнутости
y '' = (y ') '  =(3x² -6x) ' = 6x -6=6(x -1).
y '' =0 ⇒   x=1 (единственная точка перегиба)
График функции  выпуклая , если   y ''< 0 , т.е.  если x < 1 
вогнутая, если  y '' >0 ⇔ x > 1

5. Lim y  → - ∞    ;     Lim y  →  ∞
   x→ - ∞                      x→ ∞ 
* * * * * * * * *
2.
Найдите наибольшее и наименьшее значении функции на данном промежутке: f(x)=(x+1)^2 (x-1)        [-2;0]
-----------
f(x)=(x+1)² (x-1)
f ' (x) =2(x+1)(x -1)+(x+1)² =(x+1)(2x-2+x+1) =3(x+1)(x -1/3)
f'(x)      +                  -                           +
---------------(-1) ----------------(1/3)-------------  (1/3)  ∉   [-2 ;0]
f(x)     ↑      max         ↓          min         ↑ 

f(-2) =(-2+1)²( -2-1) = -3 ;
f(-1) =(-1+1)²( -2-1) = 0 ;
f(0)  =(0+1)²(0 -1) = -1 ;

наибольшее  значении функции на данном промежутке: max f(x)=f(-1) =0 ;
наименьшее значении функции_minf(x)=f(-2) = -3 .
(181k баллов)
0

помош

0 голосов

Ответ на 1 задание приведен в приложении.

(309k баллов)