Найдите площадь фигуры, ограниченной дугой окружности и стягивающей ее хордой, если длина...

0 голосов
960 просмотров

Найдите площадь фигуры, ограниченной дугой окружности и стягивающей ее хордой, если длина хорды равна 2 см, а диаметр окружности равен 4 см.


Геометрия (73 баллов) | 960 просмотров
Дан 1 ответ
0 голосов

D=4 => R=2

Если соединить концы хорды с центром окружности, то получится равносторонний треугольник, так как все стороны равны 2

Площадь  фигуры, ограниченной дугой окружности и стягивающей ее хордой

равна площади сектора минус площадь треугольника

Найдем площадь сектора

  S=(pi*R^2/360°)*A°,

ГДЕ А°- угол треугольника или угол сектора

  S=(pi*2^2/360)*60=4*pi*/6=2,09

Площадь равностороннего треугольника равна

  S=(sqrt(3)/4)*a^2

 S=(sqrt(3)/4)*4=sqrt(3)=1,73

 

То есть наша площадь равна

   S=2,09-1,73=0,36

(149 баллов)