Найти радиус описанной около правильного треугольника окружности, если радиус вписанной в...

0 голосов
92 просмотров

Найти радиус описанной около правильного треугольника окружности, если радиус вписанной в него окружности равен 3 см.


Геометрия | 92 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Так как треугольник правильный, то радиус вписанной окружности можно найти по формуле r=a√3/6 (1), а радиус описанной окружности можно найти по формуле R=a√3/3 (2).
1) Из формулы (1) находим сторону треугольника а: 
3=a√3/6;
a√3=18;
a=18/√3=18√3/3=6√3 (см).
2) Из формулы (2) находим радиус описанной окружности:
R=a√3/3=6√3*√3/3=6*3/3=6 (см).
Ответ: 6 см.

(14.0k баллов)
0

Чувак, спасибо!