xy dy = (x^2+y^2)dx
dy/dx = (x^2 + y^2)/xy
dy/dx = (x^2 + y^2)/xy
dy/dx = x/y + y/x
Пусть y/x = v, y = vx, dy/dx = v + xdv/dx
v + xdv/dx = 1/v + v
xdv/dx = 1/v
v dv = dx/x
v^2/2 = lnx + C
y^2/x^2 = 2lnx + C
y^2 = x^2 (2lnx + C)
y = ± √(x^2 (2lnx + C))
y = ± x√(2lnx + C)