Log2 (x^2 - 4x + 1) = 3
ОДЗ
x^2 - 4x + 1 > 0
x^2 - 4x + 1 = 0
D = 16 - 4 = 12
x1 = (4 + √12)/2 = (4 + 2√3)/2 = 2 + √3 ≈ 3,732
x1 = (4 - √12)/2 = (4 - 2√3)/2 = 2 - √3 ≈ 0,267
x ∈ ( - ∞ ; 2 - √3) ∪ (2 + √3; + ∞)
log2 (x^2 - 4x + 1) = log2 (8)
x^2 - 4x + 1 = 8
x^2 - 4x - 7 = 0
D = 16 + 28 = 44
x1 = ( 4 + √44)/2 = (4 + 2√11)/2 = 2 + √11 ≈ 5,316 ∈ ОДЗ
x2 = ( 4 - √44)/2 = (4 - 2√11)/2 = 2 - √11 ≈ -1,316 ∈ ОДЗ
x1 + x2 = 2 + √11 + 2 - √11 = 4
Ответ
4