Сторона правильного треугольника равна 6 корней из 3. Вычислите площадь вписанного в него...

0 голосов
104 просмотров

Сторона правильного треугольника равна 6 корней из 3. Вычислите площадь вписанного в него круга.


Геометрия (198 баллов) | 104 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Центр окружности, описанной вокруг треугольника, находится в точке пересечения  срединных перпендикуляров.
Центр окружности,  вписанной в треугольник, находится в точке пересечения его биссектрис.
Так как срединные перпендикуляры правильного треугольника - его высоты и биссектрисы, центры описанной и вписанной окружности совпадают. 
Радиус описанной вокруг правильного треугольника окружности равен 2/3 его высоты.
Радиус вписанной равен половине радиуса описанной окружности, т.е. 1/3 высоты ( медианы, биссектрисы). 
Высота правильного треугольника равна (а√3):2, радиус вписанной окружности r=[(а√3):2]:3, где а - сторона треугольника. ⇒
r=[6√3•√3):2]:3=18:6=3
Площадь круга находят по формуле:
S=π•r²
S=π•3²=



image
(228k баллов)