Уравнение окружности имеет вид (х - х0)^2 + (y - y0)^2 = R^2, где центр имеет координаты (х0; у0) и R - радиус окружности. Подставляем в данной уравнение координаты точки А, получаем (6 - х)^2 + (0 - y)^2 = 18. Так как центр принадлежит прямой у = х, то заменяем у на х:
(6 - х)^2 + (0 - х)^2 = 18, откуда х = 3.
Центр данной окружности лежит в точке О (3;3)
Следовательно, искомое уравнение окружности можно записать в виде
(х - 3)^2 + (y - 3)^2 = 18