В варианте олимпиады 7 задач, каждая оценивается в 8 баллов (за задачу можно получить...

0 голосов
25 просмотров

В варианте олимпиады 7 задач, каждая оценивается в 8 баллов (за задачу можно получить целое число от 0 до 8 баллов включительно). По результатам проверки все участники набрали разное число баллов. Члены оргкомитета втихаря исправили оценки 0 на 6, 1 на 7, 2 на 8. В результате этого участники упорядочились в точности в обратном порядке. Какое наибольшее количество участников могло быть?


Математика (12 баллов) | 25 просмотров
Дан 1 ответ
0 голосов

Так как есть только 11 возможных вариантов для количества низких оценок (0, 1, ..., 8), то участников не более 7. 

Пример, как может быть 11 участников:
1. 0 0 0 0 0 0 0 0 0 0 (сумма 0, после исправления 60)
2. 0 0 0 0 0 0 0 0 0 3 (3, 57)
3. 0 0 0 0 0 0 0 0 3 3 (6, 54)
4. 0 0 0 0 0 0 0 3 3 3 (9, 51)
5. 0 0 0 0 0 0 3 3 3 3 (12, 48)
6. 0 0 0 0 0 3 3 3 3 3 (15, 45)

(124 баллов)