Чему равна площадь равностороннего треугольника, высота которого 8 см?

0 голосов
30 просмотров

Чему равна площадь равностороннего треугольника, высота которого 8 см?


Геометрия (17 баллов) | 30 просмотров
Дан 1 ответ
0 голосов

Так как треугольник равносторонний, то все его углы раны 60°
высота проведённая в таком треугольнике делит его на два равных прямоугольника с углами равными 90°, 60°, 30° 
в прямоугольных треугольниках сторона, лежащая против угла в 30°, равна половине гипотенузы (В данном случае гипотенуза это сторона изначального треугольника, возьмём её за 2x)
По теореме Пифагора: 4x^{2}= x^{2} +8^{2}
                                        3 x^{2} =64
                                        x^{2} = \frac{64}{3}
                                        x= \frac{8}{\sqrt{3}}
сторона треугольника равна 2*\frac{8}{\sqrt{3}}=\frac{16}{\sqrt{3}}
Площадь = \frac{\frac{16}{\sqrt{3}}*8}{2} =\frac{16}{\sqrt{3}}*4=\frac{64}{\sqrt{3}}=\frac{64\sqrt3}{3}см²
Ответ:\frac{64\sqrt3}{3}см²

(264 баллов)