Привести дроби 7/60, 13/540 и 9/20 к наименьшему общему знаменателю.

0 голосов
655 просмотров

Привести дроби 7/60, 13/540 и 9/20 к наименьшему общему знаменателю.


Алгебра | 655 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Чтобы привести дроби к наименьшему общему знаменателю необходимо найти наименьшее общее кратное. Для этого:
 
1. Выпишем числа из знаменателей исходных дробей и разложим каждое из них на простые множители. 
60 = 2 * 2 * 3 * 5
540 = 2 * 2 * 3 * 3 * 3 * 5
20 = 2 * 2 * 5

Вычеркиваем все множители для 540 и 20, которые есть в разложении 60. Выделим их жирным:

540 = 2 * 2 * 3 * 3 * 3 * 5
20 = 2 * 2 * 5

2. Выписываем все множители, входящие в первое число (60):

 2 * 2 * 3 * 5

3. Домножаем на недостающие множители из разложений остальных чисел (это числа, которые не выделены жирным):

 2 * 2 * 3 * 5 * 3 * 3 = 540

Таким образом, наименьший общий знаменатель = 540. Приведем наши дроби к наименьшему общему знаменателю:

\frac{7}{60} = \frac{7*9}{60*9} = \frac{63}{540} \\\\
 \frac{13}{540} \\\\
 \frac{9}{20} = \frac{27*9}{20*27} = \frac{243}{540} \\\\


(39.4k баллов)