1)Положительные-числа больше 0
Отрицательные-числа меньше0
2)Координатная-прямая с указанной точкой отсчета(0) ,направлением и единичным отрезком.
3)Координата точки-место расположения точки на координатной прямой.
4)Противоположными называют точки на координатной прямой, равноудаленные относительно точки начала отсчета(0).
5)Целыми называют числа,используемые при счете, точки противоположные им и нуль.
6)Модулем числа А называют расстояние (в единичных отрезках) от точки А до нуля на координатной прямой.Модуль обозначают вертикальными линиями. Например, |х|-модуль числа х.
7)Модуль положительного числа есть само это число, |х|=х при х>0
Модуль отрицательного числа равен противоположному числу, |х|= -х при х<0.<br>Модуль нуля равен нулю.
8)Модуль числа НЕ может быть отрицательным.
9)Число, одно из двух, при условии,что они не равны, больше,если оно находится правее второго числа. Меньшее число из двух то, которое расположено левее на числовой поямой.
10)Положительное число всегда больше 0 и отрицательного числа. Отрицательное число всегда меньше 0 и любого положительного числа. При соавнении двух отрицательных чисел: меньшим является то число, модуль которого больше. Для всех вариантов сравнения соблюдается правило: большим из двух сравниваемых чисел является то, которое на числовой прямой располагается правее.
11) Сумма двух отриц.чисел равна числу,противоположному сумме модулей двух отрицательных чисел.
При а<0,в<0 : а+в = - (|а|+|в|)<br>12)Сумма противоположных чисел равна нулю.
13)Сумма чисел, одно из которых положительное,а другое отрицательное равна разности положительного числа и модуля отрицательного числа.
а<0, в>0: а+в=в-|а|
14) Пусть, а>в,
Если а и в -положительные, то а-в= |а|-|в|
Если а и в-отрицательные,то а-в=|в|-|а|
а-положительное, в-отрицательное, тогда:
а-в = а+|в|, в-а= -(|а|+|в|)
15) Длина отрезка на координатной прямой измеряется количеством ( целым или дробным) единичных отрезков,на которое число отстоит от начала координат.
16) а<0,в<0⇒а*в= |а|*|в|<br>17) а<0,в>0⇒а*в= -(|а|*|в|)
18) а<0,в<0⇒а:в= |а|:|в|<br>19) а<0,в>0⇒а:в= -(|а|:|в|)