6)y=3√(4x-2) +1
4x-2≥0; x≥2/4 2/4=1/2=0,5
x≥0,5
D(y)=[0,5;+∞]
E(y)=[1;+∞]
7) y=3x^2+2x-7
y'=6x^2+2; y'=0; 6x^2+2=0; x^2=-1/3 решений не имеет!
y'(-1)=6*1+2=8; 8>0 ; y'>0 функция возрастает на R
8) y=x^3+2x
D(y)=R-симметрична относительно 0!
y=f(x); f(-x)=-x^3-2x=-(x^3+2x)=f(x)
Следовательно, y=x^3+2x четная
9)y=-3x^2-6x+5 [-2;1]
y'=-6x^2-6; y'=0 ; -6x^2-6=0; x^2=-1/6 ;решений нет
Критических точек нет
f(-2)=-3*4-6*(-2)+5=-12+12+5=5-наибольшее
f(1)=-6-6+5=-7 -наим
10) =∛( (√31 -2)(√31+2))=∛((√31)^2 -2^2)=∛(31-4)=∛27=3