![image](https://tex.z-dn.net/?f=%24%24%5CLarge+%5Cint_%7B0%7D%5E%7B%5Cpi%5Cover2%7D%5Ccos%7Bx%7D%5Cmathrm%7Bdx%7D%3D%5Csin%7Bx%7D%7C_%7B0%7D%5E%7B%5Cpi%5Cover2%7D%3D1%5C%5C+%5Cint_%7B0%7D%5E%7B1%7D%5Cleft+%28+x%2B%7B1%5Cover%5Csqrt%7Bx%5E2%2B1%7D%7D+%5Cright+%29%5Cmathrm%7Bdx%7D%3D%7B1%5Cover2%7Dx%5E2%7C_%7B0%7D%5E%7B1%7D%2B%5Cln%7B%5Cleft+%28x%2B%5Csqrt%7Bx%5E2%2B1%7D+%5Cright+%29%7D%7C_%7B0%7D%5E%7B1%7D%3D%7B1%5Cover2%7D%2B%5Cln%7B%281%2B%5Csqrt%7B1%2B1%7D%29%7D-%5Cln%7B%280%2B%5Csqrt%7B0%2B1%7D%29%7D%3D%7B1%5Cover2%7D%2B%5Cln%7B%281%2B%5Csqrt%7B2%7D%29%7D%5C%5C+%5Cint_%7B0%7D%5E%7B1%7D%7B4x%5Cover1%2B2x%5E2%7D%5Cmathrm%7Bdx%7D%3D%5Cleft+%5B+2x%5E2%2B1%3Du%2C+dx%3D%7Bdu%5Cover4x%7D%3Bu%5Cin%3C1%3B3%3E+%5Cright+%5D%3D%5Cint_%7B1%7D%5E%7B3%7D%7B%5Cmathrm%7Bdu%7D%5Cover+u%7D%3D%5Cln%7Cu%7C_%7B1%7D%5E%7B3%7D%3D%5Cln%7C3%7C-%5Cln%7C1%7C%3D%5Cln3%5C%5C+%5Cint_%7B0%7D%5E%7B%5Cpi%5Cover2%7D%28%5Csin%7Bx%7D-%7B2%5Cover%5Cpi%7Dx%29%5Cmathrm%7Bdx%7D%3D-%5Ccos%7Bx%7D%7C_%7B0%7D%5E%7B%5Cpi%5Cover2%7D-%7Bx%5E2%5Cover%5Cpi%7D%7C_%7B0%7D%5E%7B%5Cpi%5Cover2%7D%3D1-%7B1%5Cover%5Cpi%7D%28%7B%5Cpi%5E2%5Cover4%7D-0%29%3D1-%7B%5Cpi%5Cover4%7D%5C%5C+%24%24)
\right ]=\int_{1}^{3}{\mathrm{du}\over u}=\ln|u|_{1}^{3}=\ln|3|-\ln|1|=\ln3\\ \int_{0}^{\pi\over2}(\sin{x}-{2\over\pi}x)\mathrm{dx}=-\cos{x}|_{0}^{\pi\over2}-{x^2\over\pi}|_{0}^{\pi\over2}=1-{1\over\pi}({\pi^2\over4}-0)=1-{\pi\over4}\\ $$" alt="$$\Large \int_{0}^{\pi\over2}\cos{x}\mathrm{dx}=\sin{x}|_{0}^{\pi\over2}=1\\ \int_{0}^{1}\left ( x+{1\over\sqrt{x^2+1}} \right )\mathrm{dx}={1\over2}x^2|_{0}^{1}+\ln{\left (x+\sqrt{x^2+1} \right )}|_{0}^{1}={1\over2}+\ln{(1+\sqrt{1+1})}-\ln{(0+\sqrt{0+1})}={1\over2}+\ln{(1+\sqrt{2})}\\ \int_{0}^{1}{4x\over1+2x^2}\mathrm{dx}=\left [ 2x^2+1=u, dx={du\over4x};u\in<1;3> \right ]=\int_{1}^{3}{\mathrm{du}\over u}=\ln|u|_{1}^{3}=\ln|3|-\ln|1|=\ln3\\ \int_{0}^{\pi\over2}(\sin{x}-{2\over\pi}x)\mathrm{dx}=-\cos{x}|_{0}^{\pi\over2}-{x^2\over\pi}|_{0}^{\pi\over2}=1-{1\over\pi}({\pi^2\over4}-0)=1-{\pi\over4}\\ $$" align="absmiddle" class="latex-formula">