Log3(x)+logx(3)=3 Срочно помогите,подробно
Решение Log3(x)+logx(3)=3 x > 0, x ≠ 1 Log₃(x) + log₃ (3) / log₃ (x) = 3 log²₃ (x) - 3*log₃ (x) + 1 = 0 log₃ (x) = t t² - 3t + 1 = 0 D = 9 - 4*1*1 = 5 t₁ = (3 - √5)/2 t₁ = (3 + √5)/2 log₃ (x) = (3 - √5)/2 x₁ = 3^((3 - √5)/2 x₂ = 3^((3 + √5)/2