** 100 карточках записаны числа от одного до 200 ** каждой карточке по два числа 1 четное...

0 голосов
52 просмотров

На 100 карточках записаны числа от одного до 200 на каждой карточке по два числа 1 четное и одно нечетное отличающиеся на 1 Вася выбрал двадцать первую карточку Могла ли сумма 42 чисел на них оказаться равнины 2017?


Математика (73 баллов) | 52 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Обратим внимание на два момента 1. числа натуральные от 1 до 200 2. Числа четное и нечетное на карточке, отличаются на 1. 
Есть одно разложение этих чисел на сто карточек
1-2, 3-4, 5-6, ..... 197-198, 199-200 итого сто пар - других разложений нет , иначе бы не выполнялся пункт что разница на каждой карточке равна 1
Сумма на карточках 3 (1*4-1), 7 (2*4-1), 11 (3*4 -1), ....   395 (99*4-1), 399 (4*100-1) то есть можно вывести общую формулу 4*k-1 (k⊂[1 100]) 
Надо теперь определить сумма 21-ой карточки равно 2017 или нет 
сложим 21 карточку 
(4*k₁-1)+(4*k₂-1)+(4*k₃-1)+...+(4*k₂₀-1)+(4*k₂₁-1)=2017
4*(k₁+k₂+k₃+...+k₂₀+k₂₁)-21=2017
4*(k₁+k₂+k₃+...+k₂₀+k₂₁)=2038
k₁+k₂+k₃+...+k₂₀+k₂₁= 2038/4 = 509.5
не может быть , так как слева сумма натуральных чисел и сумма натуральное число, а справа дробь 

(317k баллов)