Найдите вторую производную, точки перегиба и определите характер выпуклости:...

0 голосов
33 просмотров

Найдите вторую производную, точки перегиба и определите характер выпуклости: у=(x^2+2x+4)/(x+2)


Математика (72 баллов) | 33 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

ДАНО
Y=(x^2 + 2x + 4)/(x + 2)
ИССЛЕДОВАНИЕ
1. Область определения -  Х≠ -2.
Х∈(-∞;-2)∪(-2;+∞)
2. Пересечение с осью Х -  нет.  Х∈∅.
3. Пересечение с осью У.
Y(0) =2.
4. Наклонная асимптота - Y = x
5 Проверка на чётность.
Y(-x) ≠ Y(x).
Функция ни четная ни нечетная.
6. Поведение в точке разрыва.
lim(->-2) Y(x) = -∞.
lim(-2<-) Y(x) = +∞<br>5, Первая производная.
Y'(x)= \frac{x^2+4x}{x^2+4x+4}
6. Локальные  экстремумы.
Y'(x) = 0 
x= -4 - локальный  максимум.  - Y(-4) = -6 
х = 0 - локальный минимум Y(0) = 2
7. Участки монотонности функции.
Возрастает - при Y'(X) >0 -  Х∈(-∞;-4]∪[0;+∞)
Убывает - при Y'(x) <0 - X∈[-4;-2)∪(-2;0]<br>8. Вторая производная - поиск точки перегиба
Y"(x)= \frac{8}{(x+2)^3}
Точки перегиба нет. У функции две отдельные ветви с разрывом при Х = -2.
9. Выпуклая - "горка" - Y"(x)<0 при Х∈(-∞;-2) <br>Вогнутая - "ложка" - Y"(x)>0 при Х∈(-2;+∞)
10. Поведение на бесконечности
Y(-∞) = - ∞ и Y(+∞) = + ∞
10. График в приложении.


image
(500k баллов)