В плоскости CDK проведем прямую II CD, отложим на ней отрезок равный CD, и обозначим конец K1
KDCK1 - прямоугольник.
K1C перпендикулярно СD. Поскольку CD перпендикулярно МС, то KK1 перпендикулярно МК1 (эта прямая лежит в плоскости МСК1) Поэтому треугольник МК1К прямоугольный. И треугольник МСК1 тоже - К1СМ - плоский угол двугранного ула между 2 перпендикулярными плоскостями.
Отсюда
МК1^2 = CM^2+CK1^2;
KK1^2 = MK^2 - MK1^2; Собираем все это, получаем
СD^2 = 17^2 - 8^2 - 9^2 = 144 = 12^2;
CD = 12