V=135.
Рассмотрим треугольник, образованный высотой конуса АО, радиусом его основания ВО и образующей АВ.
Точка К делит высоту в заданном отношении. АК:КО=7:8 ⇒ АО:АК=15:7.
МК⊥АО, МК - радиус основания отсечённого конуса.
ВО║МК, значит тр-ки АОВ и АКМ подобны с коэффициентом подобия k=АО/АК=15/7.
Объёмы конусов зависят от высот АО и АК и радиусов ВО и МК, которые подобны как k, значит коэффициент подобия их объёмов k³.
Итак, объём отсечённого конуса v=V/k³=135·7³/15³=343/25=13.72 (ед³) - это ответ.