21. В параллелограмме ABCD перпендикуляр, опущенный из вершины В ** сторону AD, делит ее...

0 голосов
88 просмотров

21. В параллелограмме ABCD перпендикуляр, опущенный из вершины В на сторону AD, делит ее пополам. Найдите диагональ BD и стороны параллелограмма, если известно, что периметр параллелограмма равен 3,8 м, а периметр треугольника ABD равен 3 м.

32. В равнобедренный прямоугольный треугольник вписан прямоугольник так, что две его вершины находятся на гипотенузе, а две другие — на катетах. Чему равны стороны прямоугольника, если известно, что они относятся как 5: 2, а гипотенуза треугольника равна 45 см?

P. S. Распишите, пожалуйста, решение вышеуказанных задач подробнейшим образом.


Геометрия (2.4k баллов) | 88 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Параллелограмм АВСД, периметрАВСД=3,8 =АВ+ВС+СД+АД, АВ=СД, ВС=АД
периметрАВСД=2АВ+2АД, 3,8=2АВ+2АД, АД+АД=1,9
ПериметрАВД=3=АВ+АД+ВД, 3=1,9+ВД, ВД=1,1
ТреугольникАВД равнобедренный - только в равнобедренном треугольнике медиана=высоте, АВ=ВД=1,1, АД=ВС=3-АВ-ВД=3-1,1-1,1=0,8, АВ=СД=1,1

32. Треугольник АВС, уголС=90, АС=ВС, уголА=уголВ=90/2=45, 
прямоугольник КНМТ, точки К и Н на АВ, С- на ВС, Т- на АС, КТ=НМ, КН=ТС
КТ/КН=5/2, АВ=45, треугольники АКТ и СНВ равнобедренные, уголА=уголАТК=45, уголВ=уголНМВ=45, АК=КТ=НС=НВ = 5 частей
АВ=АК+КН+НВ=5+2+5=12 частей = 45, 1 часть=45/12=3,75
КН=2*3,75=7,5=МТ, КТ=НС=5*3,75=18,75

(133k баллов)