Поищем решение вида y = u(x) / (1 + x)
y' = u'/(1 + x) - u/(1 + x)^2
u'/(1 + x) - u/(1 + x)^2 + u/(1 + x)^2 + x^2 = 0
u'/(1 + x) + x^2 = 0
u' = -x^2(1 + x)
u(x) = C - ∫(x^2(1 + x) dx) = C - x^3/3 - x^4/4
y(x) = (C - x^3/3 - x^4/4)/(1 + x)
y(0) = C = 1
Ответ. y(x) = (1 - x^3/3 - x^4/4)/(1 + x)