Плоский угол при вершине правильной четырехугольной пирамиды равен а, а боковое ребро...

0 голосов
92 просмотров

Плоский угол при вершине правильной четырехугольной пирамиды равен а, а боковое ребро равно 1. найдите объем конуса вписанного в пирамиду


Геометрия (17 баллов) | 92 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Я так напишу ответ, что сразу будет понятно, как оформить решение.

 

V = (1/3)*pi*(1/2)^2*(1/2)*tg(a)

 

Пи*(1/2)^2 это площадь  круга, вписанного в квадрат со стороной 1.

(1/2)*tg(a) = H - высота пирамиды (и конуса). Из записи видно, как это получается, объяснить легко - проводите высоту пирамиды и АПОФЕМУ (высоту боковой грани), соединяете их основания в плоскости квадрата, получаете прямоугольный треугольник с углом а, далее просто.

 

V = pi*tg(a)/24;

(69.9k баллов)