Докажите, что при любом натуральном n значение выражения (3n-1)+(2n+11) делится ** 5

0 голосов
84 просмотров

Докажите, что при любом натуральном n значение выражения (3n-1)+(2n+11) делится на 5


Алгебра (146 баллов) | 84 просмотров
Дано ответов: 2
0 голосов
Правильный ответ
(3n-1)+(2n+11) = 3n-1 + 2n +11= 5n+10 = 5 (n+2) один из сомножителей делится на 5 значит и все произведение делится на 5
(316k баллов)
0 голосов

Так как если открыть скобки  3n+2n-1+11=5n+10=5(n+2)
то есть делиться на 5

(224k баллов)