0}\ \frac{sin 3x}{ \sqrt{ x+2} -\sqrt{2}}=\frac{0}{0}=\frac{\lim }{x->0}\ \frac{sin 3x(\sqrt{ x+2} +\sqrt{2})}{ (\sqrt{ x+2} -\sqrt{2})(\sqrt{ x+2} +\sqrt{2})}=\\\\=\frac{\lim }{x->0}\ \frac{sin 3x(\sqrt{ x+2} ^{\ \vec{}\ \sqrt{2} } +\sqrt{2})}{ x+2-2} =
\\\\=\frac{\lim }{x->0}\ \frac{sin 3x\ 2\sqrt{2}}{ x} = 2\sqrt{2}\ \frac{\lim }{x->0}\ \frac{ 3x}{ x}= 3*2\sqrt{2}=6\sqrt{2}" alt="\frac{\lim }{x->0}\ \frac{sin 3x}{ \sqrt{ x+2} -\sqrt{2}}=\frac{0}{0}=\frac{\lim }{x->0}\ \frac{sin 3x(\sqrt{ x+2} +\sqrt{2})}{ (\sqrt{ x+2} -\sqrt{2})(\sqrt{ x+2} +\sqrt{2})}=\\\\=\frac{\lim }{x->0}\ \frac{sin 3x(\sqrt{ x+2} ^{\ \vec{}\ \sqrt{2} } +\sqrt{2})}{ x+2-2} =
\\\\=\frac{\lim }{x->0}\ \frac{sin 3x\ 2\sqrt{2}}{ x} = 2\sqrt{2}\ \frac{\lim }{x->0}\ \frac{ 3x}{ x}= 3*2\sqrt{2}=6\sqrt{2}" align="absmiddle" class="latex-formula">