Вариант 1
№2
а) lim ₓ→₁ ˣ⁻¹/ₓ²₊ₓ = ¹⁻¹/₁²₊₁ = ⁰/₂ =0
б) lim ₓ→₁ ˣ²⁻¹/ₓ₋₁ = lim ₓ→₁ ⁽ˣ⁻¹⁾⁽ˣ⁺¹⁾/ₓ₋₁ =lim ₓ→₁ (x+1)=1+1=2
в) lim ₓ→∞ ³ˣ²⁻⁸ˣ⁺²/₅ₓ²₊₃ =lim ₓ→∞ (³ˣ²/ₓ₂ - ⁸ˣ/ₓ² + ²/ₓ²)/(⁵ˣ²/ₓ² + ³/ₓ²) =
=lim ₓ→∞ (3 - ⁸/ₓ + ²/ₓ²)/(5 + ³/ₓ²) = (3 - 8/∞ + 2/∞²) /(5 + 3/∞²)=
=³⁻⁰⁺⁰/₅₊₀ = ³/₅ =0.6