В прямоугольном треугольнике ABC (<C=90) BC=9. Медианы треугольника пересекаются в точке...

0 голосов
31 просмотров

В прямоугольном треугольнике ABC (


Геометрия (239 баллов) | 31 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть медианы KB и СМ пересекаются в т. О,в точке пересечения медиана делится на отрезки в отношении 2:1 от вершины, то есть если OB=10,то OK=5 и KB=15

Из прямоугольного треугольника CKB по теореме Пифагора

               (KC)^2=(KB)^2-(CB)^2=225-81=144

                KC=12

Так как KB, медиана, то она делит противоположную сторону пополам, то есть KC=AK=12 и AC=2*12=24

Далее

   S=AC*CB/2=24*9/2=108

(56.3k баллов)