Введем обозначения: треугольник ABC, где AB - основание равнобедренного треугольника, С - его вершина. O - центр вписанной окружности, N - середина основания, окружность касается боковой стороны CA в точке K. Если рассмотреть прямоугольный треугольник CNA (угол N - прямой), то нетрудно показать, что |AN| = |KA|, а радиус вписанной окружности равен |OK| и |ON|.
Из условия не очень понятно точка K делит сторону CA так, что |CK|/|KA| = 9/8 или 8/9. Рассмотрим сначала первый случай. Пусть |CK| = 9x, |KA| = |AN| = 8x. Тогда по теореме Пифагора высота треугольника |CN| = корень((9x+8x)^2 - (8x)^2) = x*корень(81 + 2*9*8) = x*корень(225) = 15x.
Радиус вписанного круга равен |OK|, длину которого нетрудно найти из подобия: |OK|/|KС| = |AN|/|CN|:
|OK| = |KС|*|AN|/|CN| = 9x*8x/15x = 24x/5
Для того, чтобы наконец избавиться от x вспомним, что длина окружности 48п заданная в условии равна 2пR, то есть:
48п = 2п*24x/5
или
x = 5
Основание треугольника |AB| = 2*8x = 80, высота |CN| = 15x = 75, площадь 80*75/2 = 3000,.. ну если я ничего не напутал. :)